As a "wet lab" analytic biochemistry assay, ELISA involves detection of an "analyte" (i.e. the specific substance whose presence is being quantitatively or qualitatively analyzed) in a liquid sample by a method that continues to use liquid reagents during the "analysis" (i.e. controlled sequence of biochemical reactions that will generate a signal which can be easily measured quantified and interpreted as a measure of the amount of analyte in the sample) that stays liquid and remains inside a reaction chamber or well that is needed to keep the reactants contained; It is opposed to "dry lab" that can use dry strips - and even if the sample is liquid (e.g. a measured small drop), the final detection step in "dry" analysis involves reading of a dried strip by methods such as reflectometry and does not need a reaction containment chamber to prevent spillover or mixing between samples.
As a heterogenous assay, ELISA separates some component of the analytical reaction mixture by adsorbing certain components onto a solid phase which is physically immobilized. In ELISA a liquid sample is added onto a stationary solid phase with special binding properties and is followed by multiple liquid reagents that are sequentially added, incubated and washed followed by some optical change (e.g. color development by the product of an enzymatic reaction) in the final liquid in the well from which the quantity of the analyte is measured. The qualitative "reading" usually based on detection of intensity of transmitted light by spectrophotometric which involves quantitation of transmission of some specific type of light through the liquid (as well as the transparent bottom of the well in the multi-well plate format). The sensitivity of detection depends on amplification of the signal during the analytic reactions. Since enzyme reactions are very well known amplification processes, the signal is generated by enzymes which are linked to the detection reagents in fixed proportions to allow accurate quantification - thus the name "Enzyme linked".The analyte is also called the ligand because it will specifically bind or ligate to a detection reagent and thus ELISA falls under the bigger category of Ligand Binding Assays. The ligand-specific binding reagent is "immobilized" i.e. usually coated and dried onto the transparent bottom and sometimes also side wall of a well (the stationary "solid phase'/"solid substrate" here as opposed to solid microparticle/beads that can be washed away), which is usually constructed as a multi-well plate known as the "Elisa Plate". Conventionally, like other forms of immunoassays the specificity of Antigen-Antibody type reaction is used because it is easy to raise an antibody specifically against an antigen in bulk as a reagent. Alternatively if the analyte itself is an antibody its target antigen can be used as the binding reagent.
Read More: Trans ELISA Kit suppliers
No comments:
Post a Comment