from wikipedia:
Sodium Borohydride(NaBH4 ) will reduce many organic carbonyls, depending on the precise conditions. Most typically, it is applied in the laboratory for converting ketones and aldehydes to alcohols. It will reduce acyl chlorides, thiol esters and imines. However, unlike the powerful reducing agent lithium aluminium hydride, NaBH4 typically will not reduce esters, amides, or carboxylic acids. At room temperature, the only acid derivatives it reduces are acyl chlorides, which have exceptionally high reactivity. With high temperature and concomitant high pressure, sodium borohydride can be forced to react with esters, for example.
Aqueous solutions of sodium borohydride are decomposed by catalytic amounts of cobalt(II) ions to yield sodium borate and hydrogen gas. Pellets of cobalt-doped sodium borohydride are commercially available for use in hydrogen generators, for applications where cylinders of hydrogen would be inconvenient.
BH4− is an excellent ligand for metal ions. Such borohydride complexes are often prepared by the action of NaBH4 (or the LiBH4) on the corresponding metal halide. One example is the titanocene derivative:
2 (C5H5)2TiCl2 + 4 NaBH4 → 2 (C5H5)2TiBH4 + 4 NaCl + B2H6 + H2
Read More: Sodium Borohydride suppliers
No comments:
Post a Comment